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The article considers processes of heat and mass transfer with transformation of  structure in easily 

deformable natural disperse systems. A numerical method is used to solve such problems. With this method 

as a basis, a computational experiment is carried out making it possible to describe the behavior of these 

systems in a first approximation. 

As shown in [1-3 ], the processes of heat and mass exchange in easily deformable natural disperse systems 

are associated with transformation of their structure. For these systems, one cannot neglect the effect of change in 

structure on the processes of transfer. A study of deformation during heat and mass fransfer makes it possible to 

obtain a fuller description of the process itself, thus allowing one to regulate better the technological, agrophysical, 

and physical-mechanical properties of the given system. To obtain the fullest description of the processes studied, 

it is necessary to use the physical chemistry of surface phenomena and the physicochemical mechanics of disperse 

materials. Thus, in [4 ] on the basis of the physical chemistry of surface phenomena one investigates mass transfer 

in porous bodies. Shrinkage of a periodic colloidal structure at a low rate of drying is considered. However, because 

of the complexity of such processes only computations of an approximate character were performed. 

To obtain a fuller description of the problems considered, it is necessary to resort to new methods that will 

make it possible to broaden the range of the problems solved. One of these methods is numerical experiment. Let 

us single out several areas of its use: first, it should be used instead of experimental investigations that require 

appreciable time or material input; second, it allows one to play out idealized versions of a process that are not at 

all experimentally feasible; third, it is possible to solve problems that are described by nonlinear systems of 

differential equations. 

Solution of interrelated processes of heat and mass transfer and transformation of structure in disperse 

systems can be carried out in two ways. In the first case, on the basis of the thermodynamics of irreversible 

processes and the mechanics of solid media, a system of differential equations of heat and mass transfer and 

deformation is written. It is augmented with certain rheological equations. Then, using standard numerical methods 

(a grid method or the method of finite elements) the written system of differential equations is solved. In the second 

case, on the basis of studying the physical chemistry of surface phenomena, the physicochemical mechanics of 

disperse materials, and rheology and processes of heat and mass transfer in disperse systems a model of disperse 

systems consisting of a finite number of elements is constructed by analogy with molecular dynamics. After that, 

using developed procedures, algorithms, and programs, specific problems are solved on a computer. This approach 

is investigated in [5 ]. 

Let us consider a body of rectangular shape consisting of a solid phase (skeleton) and a substance in the 

form of liquid or vapor that fills the pores. The x axis is direcled horizontally and the y axis vertically. We assume 

thai the body studied obeys in a first approximation the Hooke rheological equation. On the basis of the 

thermodynamics of irreversible processes and the mechanics of solid media it is possible to construct a system of 
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differential equations that describe the processes of heat and mass t ransfer  and deformation.  This approach is 

widely used in thermoelast ici ty theory. Thus ,  in [6-8 ], applying the thermodynamics  of irreversible processes, 

interrelated equations of thermoelastici ty are derived. Fur ther  development of this approach is given in [9-11 ], 

where general equations are given that describe interrelated processes of heat and mass t ransfer  and  deformation.  

It should be taken into account that the phenomena of heat and mass t ransfer  in disperse capillary colloidal systems 

are diverse, since they depend on a large number  of factors and arise due to many causes. All this presupposes a 

large number  of models of transfer.  Therefore ,  following [12, 13], the equations of interrelated heat and mass 

t ransfer  will be written in a general  form. We also avail ourselves of the fact that mechanical  processes are able to 

keep pace with heat  and mass exchange, since the period of their relaxat ion is smaller than in processes of t ransfer .  

This makes it possible to disregard the inertial term in equations of motion. Using results of [9-11 ], we will write 

a system of interrelated heat and mass t ransfer  and deformation in the form 

OTdim , , r  E a T  c Otldi m 
0l" -- K l lV2Td im + K12V2Vdim 3 (1 -- 2v) pc  div 0"r 

OWdim aUdim 
Or -- K21V2Tdim + K2272Wdim -- div 0---'7- 

1 2 ( l  q- V) ( aVTdi  m q- f lVWdim) . AUdim + (1 - 2v) grad div Udi m = 3 (1 -- 2v) 

Let us go over to the dimensionless form of this system, which allows one to decrease the number  of 

independent  parameters  and makes consideration of the problem easier. A similar approach is used in [14 ] for 

solution of interrelated equations of heat and mass t ransfer  without deformation.  Then,  in dimensionless form we 

have the following system of differential equations: 

0U 
OT = V2T + D I V 2 W _  D2Ka div OFo 

OFo 

O W DaV2T 0Fo - + L u V 2 W -  
Ou 

div 
OFo ' 

1 1 1 
2(1  + v ) ( 1  - 2v) VVu + 2 ( I  + v )  A u -  (1 - 2v~ ( K a V T  + " ""t~flVw)' 

where D 1 = (K12We)~ (KI 1Tc), D2 = E / ( 3 ( 1  - 2v)pcTc),  D 3 = (K21T c) / (K11Wc), Lu = K221K11, Ka =ctTc,  Kfl = 

flWc are dimensionless combinations. 

For the heat and mass t ransfer  we avail ourselves of boundary  conditions of the third kind on the upper 

boundary:  

V T = - B i  r ( T  s - T e x . m  ) ,  V W = - B i  w ( W  s -  Wex.m ) .  

On the remaining boundaries  we take qT = qw  = O. 

For the mechanical motion the boundary  conditions are written in displacements: 

(1 + v ) ( 1  - 2v) kax  + Oy J + 1 7- v Ox J nx 2 (1 -4 -v )  k Oy Ox ) 

1 
- 1 - 2 , ,  ( K .  ( r  - TO)  + ( W  - W o ) )  n x , 

2(1  + v )  I Oy + Ox ] nx + [_(1 + v ) ( 1  - 2 v )  ~ Ox + Oy J + 1---~v Oy J ny = 
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1 
-- 1 - 2v (Ka (T - TO) + K~ ( W  - W0) ) rty. 

We solve this sys t em of different ial  equat ions  numerica l ly .  For  its approx ima t ion ,  we avail ourse lves  of  the 

m e t h o d  of finite differences.  Let us take a square  grid. For  the equat ions  of heat  and  mass  t r ans f e r  we use a 

f ive-point  pa t t e rn  and  apply  the  s cheme  of cent ra l  differences.  T h e n  we have 

AT~i 4' _ AFOh 2 T~" - li+l,j Z~"-li-l,] T~" - li,j+l Z~" - li,j-I - 4  T~i,; 1 ) + D I -  t ~ . - A F ~  - I  ( + + + ( , , , + , , ;  + , , , _ , ' ;  + + 

"4- W~i, -1 W~t.,; 1) ~ (Ux i+l , j  - Uxi+l , j  - U x i _ l , j  q- j - I  -- 4 _ D 2 K a  k - I  k - 2  k - ]  

k - 2  k -1  k - 2  k - I  k - 2  
+ U x i -  1 ,j + Uyi,j+ 1 -- Uyi,j+ 1 -- Uyi , j -  1 + U y i j -  1) , (1 )  

AW~/,j = L u - - ~  (W~i+l,j q'- i -  l , j + i , j+  l q- i , j -  I + 

AFo Tk.-I Tk.-I Tk.-1 T k . . - I  __ 4 7, ) 
+ D 3 ~ (  i+l,j  + i - l , j  + i,j+l + i , j -1  , - 

1 k-1 k -2  k- I  k-2  k-1 k -2  k - I  k -2  
2 h  (Uxi+l,J - Uxi+l,J - Ux i - l , J  + Ux i - l , J  ..t- Uyi,j+ 1 - Uyi,j+ 1 - Uyi,j_ 1 + Uy i , j _ l )  . (2) 

For  the upper  b o u n d a r y ,  t h rough  which hea t  and  mass  exchange  with the  ex te rna l  m e d i u m  occurs ,  we wri te  

T~i, j T~i'-/-I + BiThTex'm �9 ~ W~i'j-1 + BiwhWexm (3) 
= BiTh + I ' J = Biwh + 1 

On the  r ema in ing  bounda r i e s  we have  

7"~/,j = Tin , W~i,j = Win. (4) 

T h e  equat ions  of  mechan ica l  mot ion  were  app rox ima ted  on a n ine -po in t  pa t tern .  T h e n  we r ep re sen t  the  

d i f ference  scheme  in the  form 

n n-1 n - I  n-1 n-1 
Uxi,] = a 6 (al ( U x i + l j  + Uxi-1, j + Uxij+ 1 + U x i j _ l )  + 

-I- a 3 (0.25 n- I  n-1 n - I  n - ,  n-1 n-1 
(Uyi+l , j+ 1 -- Uy i+l , j_  1 q- U y i _ l , j _  1 ~ U y i _ l , j + l )  + U x i + l , j  q- Uxi_l,j) - -  

h ( x , ,  - j )  + - , 
- az -~ j , KI ~ (W~i+,,i W~i_,,j))) (5) 

n . n- I  n - I  n-1 n - I  
Uyi, ] : a 6 (al (Uyi+l , j  + Uyi-1,  j + Uyi,j+l + Uy i , j_ l )  + 

+ a 3 (0.25 n- I  n - I  n - I  n-1 
(Uxi+ 1 ,j+ 1 + Uxi+ 1 , j -  1 "1- Uxi -  1 , j -  1 -- Ux i -  1 ,j+ 1 ) + 

n - 1  n - I  h 
q- Uyi,j+ 1 -b Uy i , j_ l )  - (l 2 ~ (get  (T~i~.i+ I - T~i,j_l) q- g f l  (W~i,j+l - W~t.,. i_ 

where  a 6 = 1 / (4a i  + 2a3),  al = 1 / (2(1  + v));  a2 = 1/(1 - 2v); (13 = ala2.  

1))) ,  (6) 
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Fig. 1. Typical  change in the shape of a body during heat  and mass  transfer .  

On the boundary  the difference expressions result from the following general  difference relations: 

(a  4 ( U x i + l , j  -- U x i _ l ,  j 4- Uyi,j+ 1 -- t t y i , j _ l )  4- a 5 ( t t x i + l , j  -- t t x i _ l , j )  ) rt x 4- 

4- a I (Uxi , j+l  -- Uxi , j_  1 4- Uyi+l ,  j 4- Uyi_l,j)  t l y =  2ha 2 (K a (Tii - TO) + Kfl (Wij - WO) ) n x ,  (7) 

al  (Uxi , j+l  - Uxi , j_  1 4- Uyi+l ,  j - Uy i_ l , j )  n x  4- (a  4 ( t t x i + l , j  - U x i _ l ,  j + Uyi,j+ 1 - U y i , j _ l )  + 

4- a 5 (Uyi,j+ 1 -- U y i , j _ l )  ) f ly = 2ha 2 (K a (Tiy - TO) + Kfl (Wij - WO) ) ny ,  (8) 

where a 4 = 2va3; a5 = 2al .  

Moreover,  immobil i ty  of the center  of the body as a result  of s y m m e t r y  is a ssumed,  which allows one to 

introduce an  addi t ional  condition. We assume that at the center  of the body Uxi d = O. 

The  heat -  and  mass - t r ans fe r  equations were solved by an explicit method using express ions  (1)-(4) :  

, = i , /  + " , = i , 2  + �9 

The  equations of motion in displacements  (5)-(8) were solved by the i teration method of unde r  re laxat ion 

[15] at each step AFo. To stop the iterative procedure,  we used the expression max(  lun - un- I  I.) < e. 
lunl 

Performing calculations, it is possible to obtain the distr ibution of the quanti t ies T, W, axx, ayy, axy, and  

u in space and  t ime, which makes  it possible to describe the behavior  of the body.  A typical change  in the shape  

of the body in the process of heat  and  mass  t ransfer  is shown in Fig. 1. Numerous  computa t ional  exper iments  

performed on this model  give a qualitative picture of the deformat ion  in t ime of a body that  exper iences  heal  and  

mass  t ransfer .  In the initial period, as a result of a decrease in the mois ture  content ,  the upper  surface contracts .  

This  leads to the appearance  of tensile s t resses on the upper  and  side surfaces.  The  lower surface is also s t re tched,  

and  this causes a slight increase in its dimensions in comparison with its initial size. The  edges of the upper  surface  

are bent.  Fur ther  heat  and  mass  t ransfer  decreases the mois ture  content ,  now over  the entire body ,  and  this leads 

to shr inkage of the entire specimen. However,  as long as the gradients  of the fields increase,  the deformat ion  of 

the shape also increases.  This  causes the lower surface to bend upward.  After that ,  the shape  ceases  to change.  

When the gradients  of the fields decrease,  the surfaces begin to s t ra ighten out slowly, and  the body  continues to 

dry as before. A fur ther  decrease  in the gradients  leads to a decrease in the deformat ion  of the shape,  and  at the 

end of the process of heat  and  mass  t ransfer  the body takes its original shape but of a smal ler  size that  cor responds  

to the new mois ture  content ,  tempera ture ,  and coefficients of shr inkage  and expansion.  

Let Wf be the mois ture  content  of the body at which the mois ture  content  of its lower surface  is equal to 

0.1% of the initial value. Now, we est imate the time of terminat ion of the process of heat  and  mass  t rans fe r  both 

in the presence of deformat ion of the body and without it. For the end of the process we take the t ime when the  

moisture content  becomes smaller  than Wf. Calculations were carr ied out for the following values of the charac-  

teristics: D1 = 0.1; D2 = 1; D 3 = 0.1; Lu = 1; Ka = 0.005; Bi W = Bi T = 1; T o = W 0 = 1; Tex. m = Wex.m = 0. In the 

absence of deformat ion  of the body,  the process terminates  at For = 5.5. In the presence of deformat ion ,  the t ime 

of terminat ion of the process of heat and mass exchange depends  on the coefficients of shr inkage  and  expans ion  
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TABLE 1. Dependence  of For on the Shr inkage Coefficient for Different Values of the Poisson Coefficient  

Fof 

v - - 0  v = 0 . 3  v= 0.49 

0.01 

0.05 

0.1 

0.2 

0.3 

0.4 

0.5 

5.7 

6.3 

7.0 

8.3 

9.6 

10.8 

12.1 

5.8 

6.5 

7.4 

9.1 

10.7 

12.3 

13.9 

5.8 

6.6 

7.6 

9.5 

11.4 

13.2 
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Fig. 2. Curves of the kinetics of moisture  content for different values of Kfl: 
1) Kfl--0, 2) 0.05, 3) 0.2, 4) 0.4, 5) 0.6. 

and the Poisson coefficient. The  dependence  of For, which character izes the end of the process of heat  and  mass  

t ransfer ,  on the coefficient of shr inkage  for different values of the Poisson coefficient is d isp layed in Tab l e  1. 

1 N 
As the mois ture  content  of the body.  we take its average value Way = - -  E W l. We adopt  v = 0.3, and  we 

Nl=l 

leave the o ther  pa ramete rs  without change.  T h e  kinetics of drying for a nondeformed  and  a de fo rmed  body  for  

different  coefficients of shr inkage is presented  in Fig. 2. 

We consider  now the dynamics  of the tempera ture  and  mois ture-content  fields. H e r e  Kfl = 4 and  the 

remaining  pa ramete r s  do not change.  Curves of the distr ibution of the mois ture  content  and  t e m p e r a t u r e  at the 

center  of the specimen for different values of Fo for both a deformed and a nondefo rmed  body  are  p resen ted  in 

Fig. 3. C o m p a r i s o n  of the curves indicates  a difference in the d is t r ibut ion of the hea t  and  mo i s tu r e  fields. 

Computa t ions  showed that  they decrease  with decrease in the coefficients of shr inkage and  expansion.  

The  difference in the behavior  of the mois ture-content  fields of a deformed and  a nonde fo rmed  body is 

associated with the  mobili ty of the skeleton. In a deformed body,  not only moisture  but also the solid phase  of the 

subs tance  passes  through the control volume, and  this decreases the fraction of liquid and  vapor  in the flow. From 

Table  1 it is seen that  the t ime of the end of the process also depends on the Poissson,coefficient.  It is known that  

at v = 0 deformat ion  of the body is associated with a change in its volume, and at v = 0.5 a change in the shape  

occurs without a change in the volume of the body. Thus,  prescribing different values of the Poisson coefficient,  

we thereby  p rede te rmine  various behavior  of a porous body in deformation.  Therefore ,  a difference in the t ransferor  

mass is associated with a change in the relative content of pores in the body.  

C o n s i d e r  the  s t r e s ses  tha t  a r i se  in the body.  It should  be no ted  that  it is very  difficult  to obta in  

exper imenta l ly  graphs  of the distr ibution of the s t ress- tensor  components  over the coordinates  and  their  dynamics  

in time. Therefore ,  finding even qualitative distr ibutions is of some interest.  We took the d imens ionless  Young ' s  

modulus to be equal to one. Typical  distr ibutions of the stresses Oxx, ayy, and a.rv over the x coordinate  for different  
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Fig. 3. Distribution of temperature and moisture content at different values 

of Fo in the presence (a, c) and absence (b, d) of deformation: l )  Fo = 0.01, 

2) 0.1, 3) 0.3, 4) 0.5, 5) 0.7, 6) 0.9, 7) 1.2, 8) 1.5, 9) 2, 10) 3, 11) 5, 12) 9. 

layers along the y coordinate  at Fo = 0.3 are presented in Fig. 4. The  other  pa ramete r s  remain  as they were.  T h e  

counting of the layers  begins from the lower surface (0 is the lower surface,  19 is the upper  surface) .  As one would 

expect f rom the conditions of the problem, the components  of the tensor  of s t resses  are symmet r ic  about  the center  

of the body.  The  component  axx acquires its max imum value on the upper  and  lower surfaces,  ayy is g rea tes t  in 

absolute value on the side surfaces,  and  the shear  stress axy at ta ins  its m a x i m u m  absolute value within the  body 

between the center  and  a side surface. In the central  portion of the body and  on all surfaces axy = O. 

T h e  symmetr ic  form of the s tresses allows one to consider  the distr ibution of the components  a long the 

coordinate  y for different  values of Fo at the center  of the body in the case of Oxx and  Oyy and  within the  body  

between the center  and  a side surface in the case of axy. Thus ,  in the case of axx in the initial period of hea t  and  

mass exchange  s t resses  ar ise  in the upper  layers and decrease sharp ly  toward the bot tom of the body.  In this period 

they increase rapidly on the upper  surface. After a certain time, as the s t resses  increase in the upper  layers ,  the 

s tresses in the lower layers  also begin to increase. On the lower bounda ry  this occurs most vigorously. At the center  

the s t resses  acquire a negative, though small, value. As a result we obtain that  the s t resses  fall from the upper  

surface into the inter ior  and  their  smallest  value is at the center ,  but then they increase again f rom the center  to 

the lower surface.  However ,  on the upper  surface they are still h igher  than on the lower one. Subsequent ly ,  they 

fall on the upper  surface and  increase on the lower one. At the center  the s t resses  remain min imum as before.  As 

Fo increases,  the s t resses  on the upper  surface become smaller  than on the lower one. After this, the s t resses  on 

the lower surface,  which up to now increased,  begin to decrease,  just as in the upper  layers.  T h e n  they decrease  

in absolute value on all planes, tending to zero at the end of the process. 
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Fig. 4. Distribution of s t resses over the x coordinate  in different layers  along 

the y axis: a) Oxx; b) Oyy; c) Crxy. The  figures at the points denote  the number s  

of the layers.  

The  s t resses  ayy at the center  of the body take their  smallest  absolute values on the lower surface and  

increase monotonical ly  toward the upper  surface, but on the surface itself they again  fall sharp ly  to zero. T h e  

negative sign of ayy indicates that  the body shrinks at its center,  But closer to the side surfaces the sign of tTyy is 

changed.  In the lower regions the s tresses are  equal to zero, but they increase closer to the center  and  take on 

max imum positive values at the center.  From the center  upward the values decrease and  become negative.  But on 

the surface itself they are  equal to zero. This  indicates that  the lower edges of the body move upward  and  the upper  

downward.  At the center  of the body  m a x i m u m  values are a t ta ined at the beginning of the process of hea t  and  mass  

exchange.  As Fo increases,  the absolute  values of tYyy tend to zero. On the side surfaces they first increase,  a t ta in  

a max imum at  a certain Fo, and  then fall to zero by the end of the process of heat  and  mass  exchange.  

The  quantit ies axy at the beginning of heat  and  mass  exchange  increase in absolute  value in the upper  half 

of the body,  while they are equal to zero in the lower half. As Fo increases,  the shear  s t resses  in the upper  half of 

the body also increase.  At a certain Fo stresses also appear  in the lower half, but their  sign is opposi te  to that  of 

the s tresses in the upper  half. Subsequent ly ,  axy in both the upper  and lower parts of the body cont inue to increase  

in absolute value. At a certain Fo, in the upper  half of the body axy attain their  m a x i m u m  value, a f te r  which they 

begin to decrease.  In the lower half they increase as before. Then ,  Fo at which in the lower port ion of the body 

axy at ta in a m a x i m u m  in absolute value is reached,  af ter  which they fall, just as in the upper  half, tending to zero 

at the end  of the process. 

Calculat ions also showed that  the s tresses in the body increase with increase  in its l inear  d imensions .  It  

should be noted that  upon displacement  of the particles of the skeleton,  in addit ion to the forces that  act on the  

solid phase,  a pressure  P appears  in the liquid phase of the body. The  gradient  of the lat ter  will cause  fi l trat ional 

motion of the moisture.  Therefore ,  for a more  complete description it would be necessary  to introduce and  consider ,  

along with the fields of T and IV, the distribution of the pressure  P in the body.  

Although the given model does not allow one to calculate the process of cracking, knowing the s t rength  of 

the body it is possible to de termine  the conditions under  which it occurs. 

For a more  complete and accurate  description of the processes of heat  and mass  t ransfer  with t rans format ion  

of the s t ructure  in easily deformable  natural  disperse sys lems  within the f ramework of the mechanics  of solid media,  

in addit ion to the introduction of the addit ional  variable P it is necessary to lake the coefficients K I I ,  K12, K21, 

K22, c, p not as constant  quantities,  but as functions that  depend on T and W and the changing s t ructure  of the 

body. Moreover, it is necessary to use a more complex rheology of the body that would descr ibe its mechanical  

behavior more accurately.  

407 



However, the present model in a first approximation describes the behavior of a deformable body in the 

course of heat and mass transfer and allows one to obtain the distribution of the temperature and moisture-content 

fields and the fields of deformations and stresses, to make a comparative analysis of the processes of heat and mass 

transfer with deformation and without it, to determine the time of termination of the processes of heal and mass 
transfer, to follow the change in the shape of the body in time, and to evaluate possible conditions of cracking. 

N O T A T I O N  

Tdim, t empe ra tu r e ,  K; Wdim, mois ture  content ,  kg /kg;  Udim, d i sp lacement ,  m; T, dimensionless 
temperature; W, dimensionless moisture content; u, dimensionless displacement; KI1 , KI2 , K21 , K22 , coefficients 
of heat and moisture transfer, m2/sec, (m 2.K)/sec,  m2/(sec .K), m2/sec; E, Young's modulus, Pa; v, Poisson 

modulus; c, specific heat, J / (kg .K) ;  a, temperature coefficient of expansion, I /K;  ,8, shrinkage coefficient; p, 
density, kg/m3; DI, D2, D3, Lu, Ka, Kfl, dimensionless combinations; Tc, characteristic temperature, K; We, 

characteristic moisture content, kg/kg; BiT, temperature Biot number; Biw, mass-exchange Biot number; Fo, 

Fourier number; Ts, Ws, dimensionless values of the temperature and moisture content on the surface; Tin , Win, 
dimensionless  temperature  and moisture content of internal points adjoining boundary  points; TO, W0, 

dimensionless initial temperature and moisture content of the body; Tex.m, Wex.m, dimensionless temperature and 
moisture content of the external medium; qT, heat flux, W/m2; qw, flux of moisture, kg/(m2-sec);  axx , ayy, Oxy, 

dimensionless components of the tensor of stresses; h, step of the grid; k, number of the layer in time; n, number 

of the iteration in the iteration method; Way, dimensionless average moisture content of the body; W l, dimensionless 
moisture content at the node l; N, number of nodes; e, a certain small constant number; ~, time, sec; Ux, Uy, 

dimensionless components of the displacement; n x, ny, direction cosines; i, number of the node along the x axis; 

j, number of the node along the y axis; l, global number of the node. Subscripts: dim, dimensional; s, surface; ex.m, 
external medium; f, final; av, average value; c, characteristic; in, internal; 0, initial. 
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